

INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST

MATHEMATICS – 041

CLASS: XII MAX. MARKS: 20

DATE: 09-05-2021 TIME ALLOWED: 40 MINUTES

INSTRUCTIONS:

- 1. All questions are compulsory.
- 2. Calculators are not allowed.
- 3. Question No 1 to 2 are Very short answer Type questions of 1 mark each.
- 4. Question No 3 to 6 are Short answer type I questions of 2 marks each.
- 5. Question No 7 to 8 are Short answer type- II questions of 3 marks each.
- 6. Question No. 9 is on case study. The case study question has 5 case based subparts. An examinee is to attempt any 4 out of 5 sub parts (1 Mark each).

Q.No
1. Find $\frac{dy}{dx}$ if $y = \cos(\sqrt{3^x})$ 1. Marks
1

2. If
$$y = \log(sec^2x)$$
, find $\frac{dy}{dx}$

3. Find the left hand derivative of the following function $f(x) = \begin{cases} x[x] & 0 \le x < 2 \\ x(x-1) & 2 \le x < 3 \end{cases} \text{ at } x = 2$

Using the above result what do you conclude about the differentiability of the function at x = 2?

4. If
$$x = t^2$$
 and $y = t - t^3$, find $\frac{d^2y}{dx^2}$ at $t = 1$

5. Differentiate w.r.t.
$$x : tan^{-1} \left(\frac{2\sqrt{x}}{1-x} \right)$$

6. If
$$y = \sin^{-1}\sqrt{3 - x^2}$$
 and $u = \sqrt{3 - x^2}$ find $\frac{dy}{du}$

7. If
$$x^p y^q = (x+y)^{p+q}$$
, prove that $\frac{dy}{dx} = \frac{y}{x}$ and $\frac{d^2y}{dx^2} = 0$

8. If
$$y = e^x(\sin x + \cos x)$$
, prove that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$

9. Case study-based questions are compulsory. Attempt any four sub parts of each question. Each sub part carries 1 mark.

The Transamerica Pyramid, shown below, is an office building in San Francisco. It stands 853 feet tall and is 145 feet wide at its base. Imagine that a coordinate plane is placed over a side of the building. The graph on the left in the image below represents a cross section of the tower (graph is not proportional to actual height and width) and is defined by the function,

f(x) = -|x - 50| - |x - 100| + 150, where x axis represents the width and y axis represents the height.

Based on the above information, answer any four of the following questions:

- (i) Which among the following is the correct statement?
- (A) f(x) is discontinuous at x = 50 and x = 100.
- (B) f(x) is continuous at only x = 50 and x = 100.
- (C) f(x) is continuous at all points in its domain.
- (D) f(x) is discontinuous at all points in its domain.

(ii) Find
$$f'(x)$$
 when $x \in (50,100)$

- (A) 5
- (B) 0
- (C) -1
- (D) 10

(iii) Which statement among the following is correct?

- (A) f(x) is differentiable everywhere. (B)
 - (B) f(x) is not differentiable in (0,50)

1

1

1

(C) f(x) is not differentiable in (50,100) (D) f(x) is not differentiable at x = 50 and x = 100

(iv) Find
$$\frac{dy}{dx}$$
 when $x = 120$

- (A) 2
- (B) 2
- (C) 0
- (D) 80

(v) Find
$$\frac{d^2y}{dx^2}$$
 when $x = 40$

- (A) -2
- (B) 2
- (C) 0
- (D) 40