INDIAN SCHOOL MUSCAT
SECOND PERIODIC TEST
MATHEMATICS - 041
MAX. MARKS: 20

DATE: 09-05-2021
TIME ALLOWED: 40 MINUTES
INSTRUCTIONS:

1. All questions are compulsory.
2. Calculators are not allowed.
3. Question No 1 to 2 are Very short answer Type questions of 1 mark each.
4. Question No 3 to 6 are Short answer type - I questions of 2 marks each.
5. Question No 7 to 8 are Short answer type- II questions of 3 marks each.
6. Question No. 9 is on case study. The case study question has 5 case - based subparts. An examinee is to attempt any 4 out of 5 sub - parts (1 Mark each).
Q.No

Marks

2. If $\mathrm{y}=\log \left(\sec ^{2} \mathrm{x}\right)$, find $\frac{d y}{d x}$
3. Find the left hand derivative of the following function

$$
f(x)=\left\{\begin{array}{ll}
x[x] & 0 \leq x<2 \\
x(x-1), & 2 \leq x<3
\end{array} \text { at } \mathrm{x}=2\right.
$$

Using the above result what do you conclude about the differentiability of the function at $\mathrm{x}=2$?
4. If $\mathrm{x}=t^{2}$ and $\mathrm{y}=t-t^{3}$, find $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{t}=1$
5. Differentiate w.r.t. $\mathrm{x}: \tan ^{-1}\left(\frac{2 \sqrt{x}}{1-x}\right)$
6. If $\mathrm{y}=\sin ^{-1} \sqrt{3-x^{2}}$ and $\mathrm{u}=\sqrt{3-x^{2}}$ find $\frac{d y}{d u}$
7. If $x^{p} y^{q}=(x+y)^{p+q}$, prove that $\frac{d y}{d x}=\frac{y}{x}$ and $\frac{d^{2} y}{d x^{2}}=0$
8. If $y=e^{x}(\sin x+\cos x)$, prove that $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$
9. Case study-based questions are compulsory. Attempt any four sub parts of each question. Each sub part carries 1 mark.

The Transamerica Pyramid, shown below, is an office building in San Francisco. It stands 853 feet tall and is 145 feet wide at its base. Imagine that a coordinate plane is placed over a side of the building. The graph on the left in the image below represents a cross section of the tower (graph is not proportional to actual height and width) and is defined by the function, $f(x)=-|x-50|-|x-\mathbf{1 0 0}|+\mathbf{1 5 0}$, where x axis represents the width and y axis represents the height.

Based on the above information, answer any four of the following questions:
(i) Which among the following is the correct statement?
(A) $f(x)$ is discontinuous at $x=50$ and $x=100$.
(B) $f(x)$ is continuous at only $x=50$ and $x=100$.
(C) $f(x)$ is continuous at all points in its domain.
(D) $f(x)$ is discontinuous at all points in its domain.
(ii) Find $f^{\prime}(x)$ when $x \in(50,100)$
(A) 5
(B) 0
(C) -1
(D) 10
(iii) Which statement among the following is correct?
(A) $f(x)$ is differentiable everywhere.
(B) $f(x)$ is not differentiable in $(0,50)$
(C) $f(x)$ is not differentiable in $(50,100)$
(D) $f(x)$ is not differentiable at $x=50$ and $x=100$
(iv) Find $\frac{d y}{d x}$ when $x=120$
(A) -2
(B) 2
(C) 0
(D) 80
(v) Find $\frac{d^{2} y}{d x^{2}}$ when $x=40$
(A) -2
(B) 2
(C) 0
(D) 40

